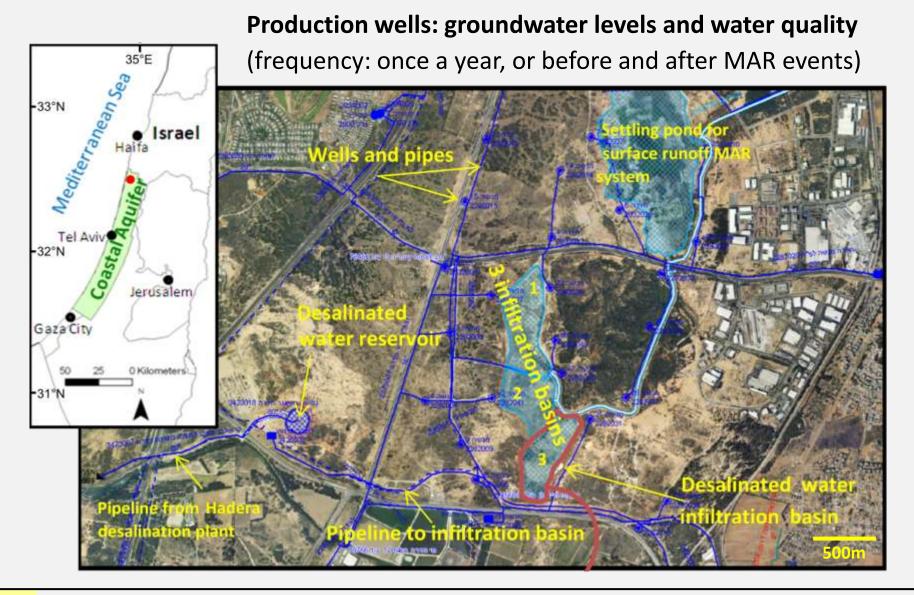
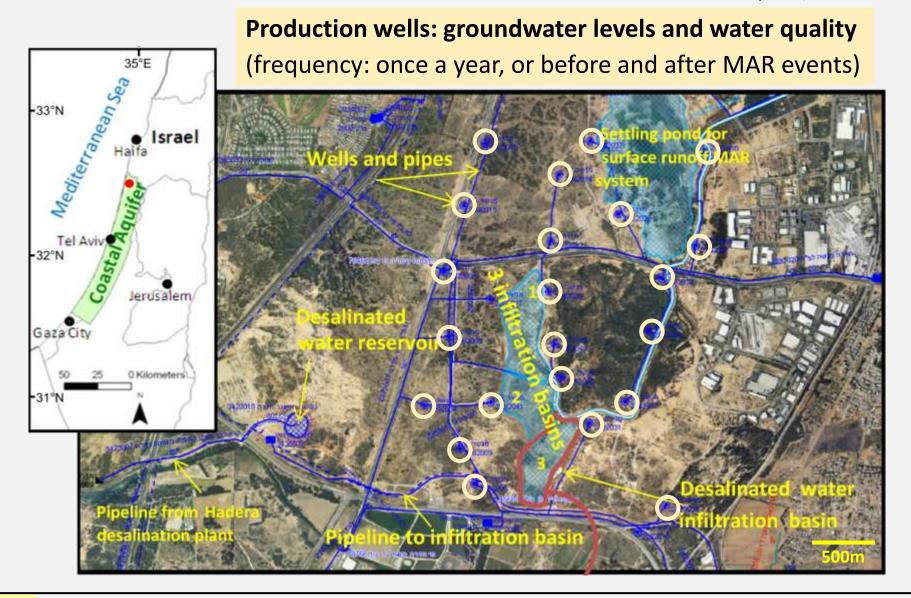


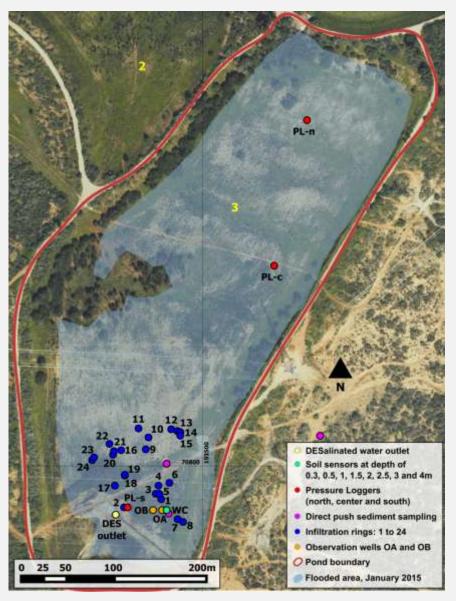
Menashe Infiltration Basin Hadera, Israel

Yonatan Ganot, Gefen Ronen-Eliraz, Ido Nitzan, Daniel Kurtzman (ARO) Yara Dahdal, Hagar Siebner, Anat Bernstein (BGU) Yoram Katz, Roei Shapira, Jospeh Guttman (MEK)


> MARSOL Lavrion Workshop Athens, 16 – 18 March 2016 Monitoring and Investigation Technologies

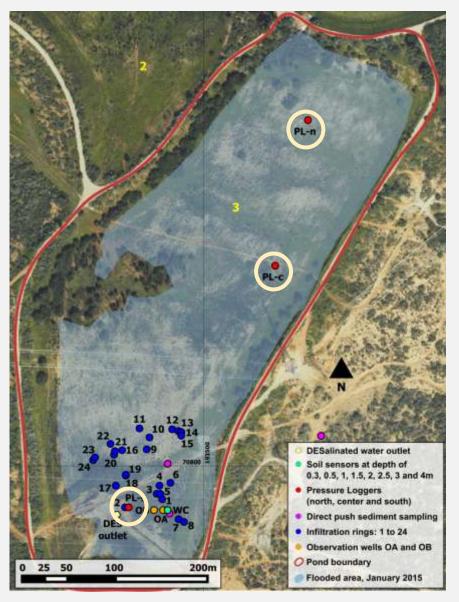
Menashe site - overview





Infiltration pond

Pond surface:


levels, EC and T (cont. during MAR) water quality (few times during MAR)

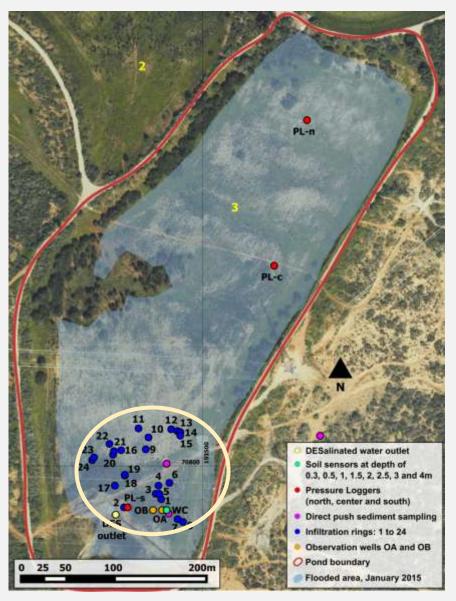
Infiltration rates

Single-ring infiltrometers (few times during MAR)

Vadose zone: WC, bulk EC and T (continuously) pore water (few times during MAR)

GW observation wells: levels, EC and T (continuously) water quality (every 3 months)

Infiltration pond


Pond surface:

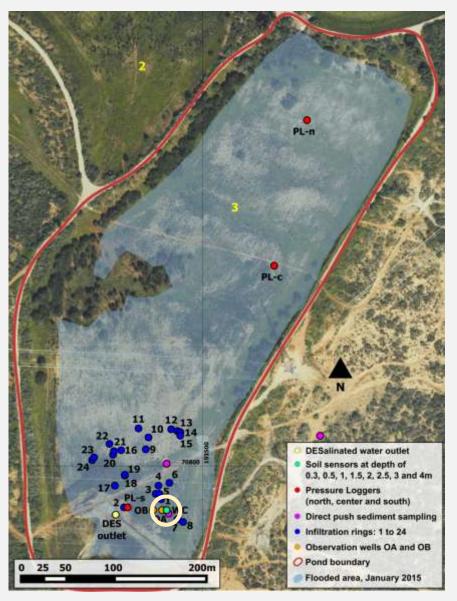
levels, EC and T (cont. during MAR) water quality (few times during MAR)

Infiltration rates Single-ring infiltrometers (few times during MAR)

Vadose zone: WC, bulk EC and T (continuously) pore water (few times during MAR)

GW observation wells: levels, EC and T (continuously) water quality (every 3 months)

Infiltration pond


Pond surface:

levels, EC and T (cont. during MAR) water quality (few times during MAR)

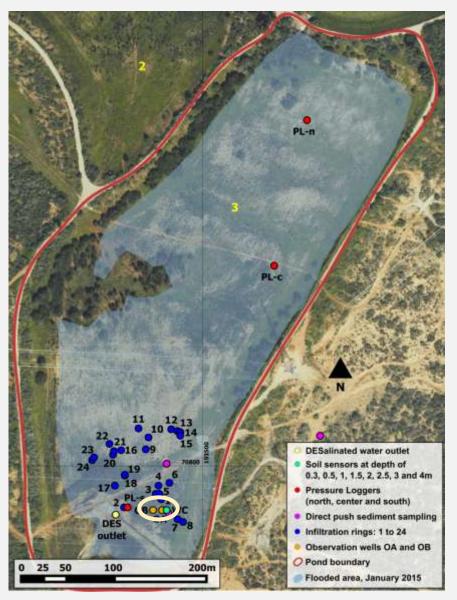
Infiltration rates Single-ring infiltrometers (few times during MAR)

Vadose zone: WC, bulk EC and T (continuously) pore water (few times during MAR)

GW observation wells: levels, EC and T (continuously) water quality (every 3 months)

Infiltration pond

Pond surface:


levels, EC and T (cont. during MAR) water quality (few times during MAR)

Infiltration rates

Single-ring infiltrometers (few times during MAR)

Vadose zone: WC, bulk EC and T (continuously) pore water (few times during MAR)

GW observation wells: levels, EC and T (continuously) water quality (every 3 months)

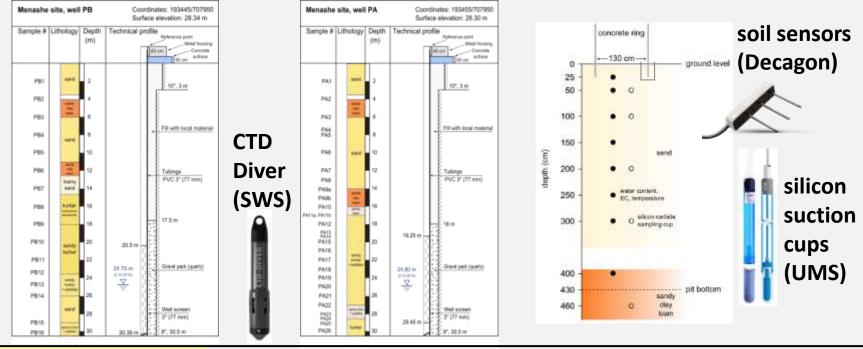
Infiltration pond

Pond surface:

levels, EC and T (cont. during MAR) water quality (few times during MAR)

Infiltration rates

Single-ring infiltrometers (few times during MAR)


Vadose zone: WC, bulk EC and T (continuously) pore water (few times during MAR)

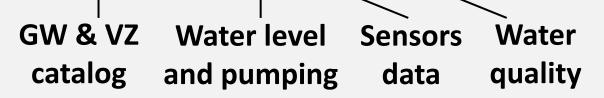
GW observation wells: levels, EC and T (continuously) water quality (every 3 months)

Monitoring system – GW & VZ

Methods

Monitoring MAR January 2015

Database (WP9 deliverable)

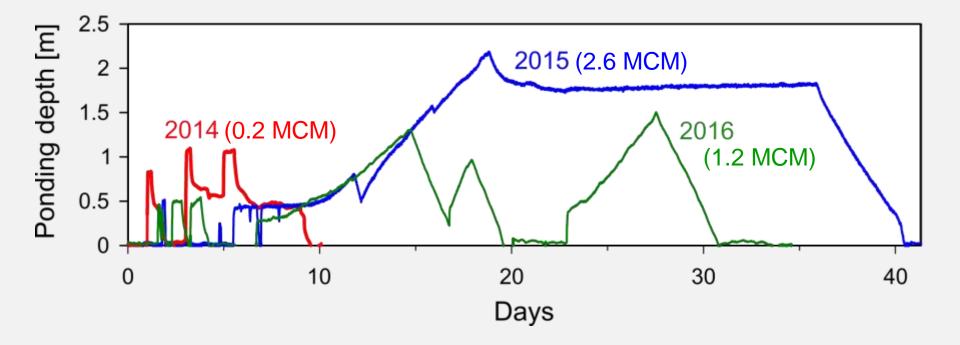


MS Access based

MARSOL Lavrion Workshop Athens, 16 - 18 March 2016

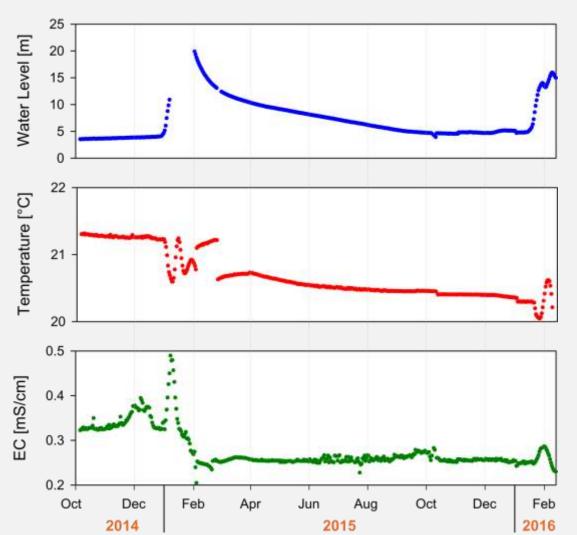
	ID_IWS	Niene	Use	X_IIM	Y_IIM .	Altitude_(m_amst)	Original_BH_Depth	Updated_BH_Depth	Top_ol_Screen_1	Bottom_of_screen_1	Top_of_Screen_2	Bottom_of_screen_2	Top_of_Scr
9370781	99999999	PA	ARD observation	193434	707950	28.34	30.5	30.5	19.25	29.45			
9370782	999999999	PB	ARO observation	193446	707930	28.24	30.5	30.5	20.5	30.4			
2032009	20914202	Hadera 1	Mekarat Production	192739	709548	23.13	88.1	83.63	74	83.63			
2032010	21014301	Hadera 2	Mekarat Production	193045	710480	27.4	114	85	54	85			
2032011	21114301	Hadera 3	Mekarat Production	193282	711188	24.64	84	83.2	41.4	55.62	65.77	83.32	
2032012	20914302	Hadera 4	Mekarat Production	193526	709772	43.83	94	94	57.1	94			
2032028	21014309	Hadera 5a	Mekorot Production	193866	710875	37.27							
2032026	20914407	Hadera 6	Mekorot Production	194028	709965	37.89	. 93	90.5	58.5	88.5			
2032027	21014308	Hadera 7	Mekorat Production	193821	710496	36.14	105	88	54.49	66.16	69.17	76.09	79.0
2032001	21214201	Keisaria 1	Mekorot Production	192236	712489	14.75	114.5	92	29	34	40	46	52
2032025	21114303	Keisaria 4	Mekorot Production	193456	711509	18.42	70	70	46.96	55.96	55.96	66	
2212002	20914012	Keisaria 6	Mekorot Production	190134	709509	8.99	39.1	39.1	31.54	37.6			
2212003	20914013	Kelsaria 7	Mekorot Production	190145	709184	9.24	46.5	45.5	25.3	28.35	36	45.5	
2282010	20714401	Menashe 10	Mekorot Production	194165	707664	17.96	61.3	61.3	35.2	55.2			
2282012	21114502	Menashe 12	Mekarat Production	195693	711089	34.44	65.5	52.7	32.4	52.7			
2282017	21054408	Menashe 13a	Mekorot Production	194464	710931	31.64	88	70	54.89	67			
2282014	21014307	Menashe 14	Mekoret Production	193592	710255	43.98	100	\$7.7	58.77	90			
2282015	21014202	Menashe 15	Mekarot Production	192889	710030	24.69	86	85	56.8	81			
2282039	21114417	Menashe 16a	Mekorot Production	194059	711292	31.55	68.5	67	47.98	64.99			
2282028	20914406	Menashe 18a	Mekoret Production	194596	709740	38,48	100	100	63	72	75.5	96.5	
2282027	22514501	Menashe 1a	Mekarat Production	193079	709322	29.12	92	92	48	63	68	74	84
2282026	20914308	Menashe 20	Mekarat Production	193518	709405	38.88	98.8	97.3	68.3	91.3			
2282031	20814313	Menashe 21	Mekarot Production	193818	708457	36.87	89.2	89.2	65.2	57.2			
2282032	20914405	Menashe 22	Mekorot Production	194342	709501	37.94	95.38	89	60.8	89			
2282033	20714405	Menashe 23	Mekorot Production	194379	707861	19.05	75	75	44.54	52.75	57.75	68.94	70.9
2282034	21114416	Menashe 24	Mekorot Production	194440	711198	25.96	90.4	69	55	73.8	74.3	83	
2282035	21014405	Menashe 25	Mekorot Production	194667	710414	36.66	104.5	100.5	90	99			
2282037	20814407	Menashe 26	Mekorat Production	194079	708611	35.62	86	84.5	51.73	72.73	76.98	81.98	
2282038	20814406	Menashe 27	Mekorot Production	194253	709126	34.52	84	81	51.75	70.75	76	79	
2282041	20814301	Menashe 2a	Mekorot Production	193050	708636	28.69	92	90	58	71.3	71.8	87	
2282003	20914203	Menashe 3	Mekorat Production	192778	709083	13.63	78.38	78.38	30.18	38.55	43.05	49.7	53.2
2282004	20814203	Menashe 4	Mekarot Production	192588	708586	13.11	78	74.5	36.7	38	42.5	34.5	
2282036	20714308	Menashe 5a	Mekarat Production	193063	707718	13.83							
2282005	20814205	Menashe 6a	Mekarat Production	192970	708017	14.27	78.5	66.6	41.4	66.4			
2282030	20814312	Menashe 7a	Mekarat Production	193609	708767	38.22	98	97.75	61	91			
2282040	20914309	Menashe 8a	Mekarat Production	193554	709025	44.25	96.5	93	58.09	68.32	71.82	92	
2282009	20814204	Menashe 9	Mekarat Production	192551	708277	18.43	83	83	47.5	52.5	55,5	60.5	62
2212005	21014010	Sedot Yam 2	Mekorot Production	190242	710621	6.77	21.5	21.5	16.5	20.5			
2212006	21014011	Sedot Yam 3	Mekorot Production	190227	710315	8,4	24	20	13.7	20			

* M Well_Catalog VadoseZoneSuifaceCatalog Water_Level Pumping Sensor_Fell_Dota Water_Quality



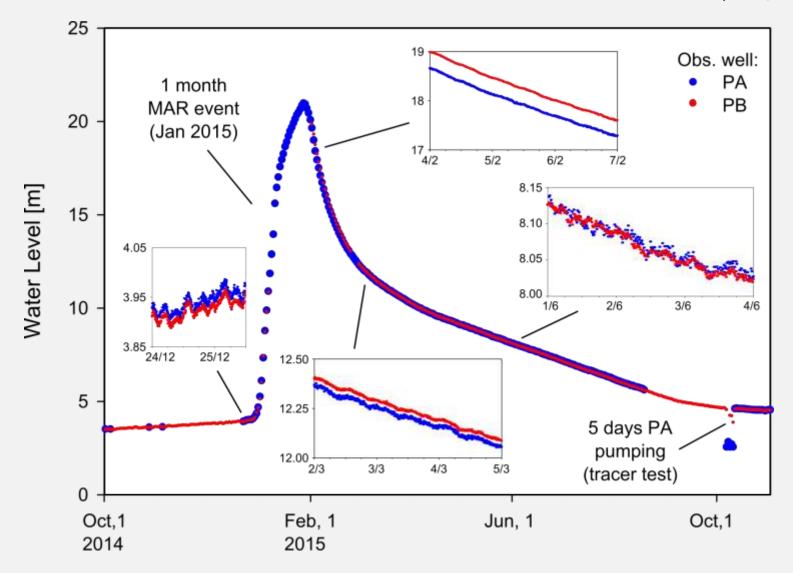
Data (few examples)

MARSOL Lavrion Workshop Athens, 16 – 18 March 2016


Ponding depth during three MAR events

GW Observation wells

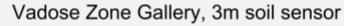
MARSOL Lavrion Workshop Athens, 16 – 18 March 2016

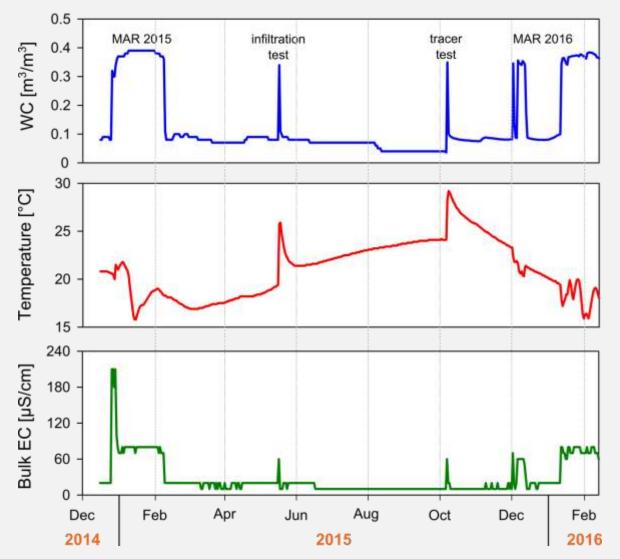


Observation Well PB

Overview	Methods	Monitoring	Data	Extras	Summary
----------	---------	------------	------	--------	---------

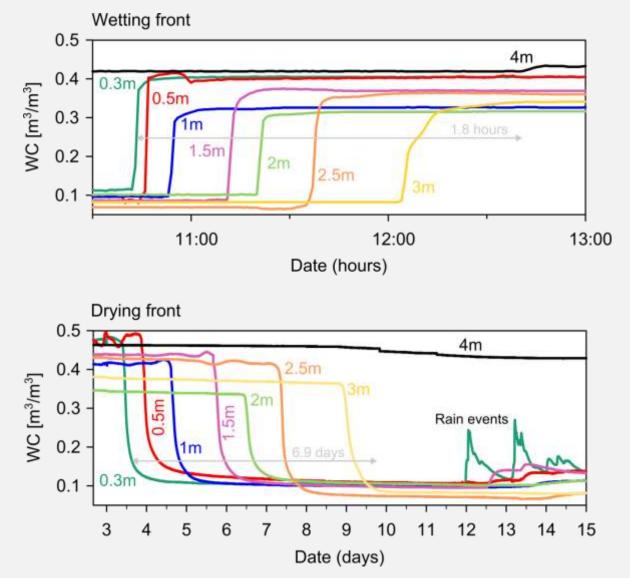
GW Obs. wells during MAR 2015




Overview	Methods	Monitoring	Data	Extras	Summary

Vadose zone gallery

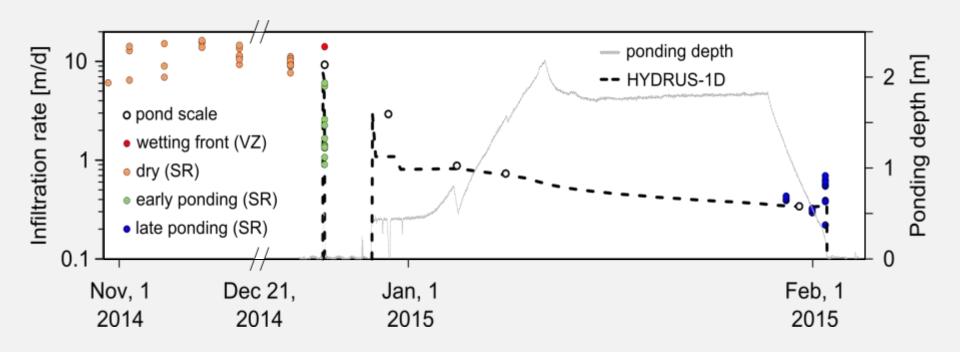
MARSOL Lavrion Workshop Athens, 16 – 18 March 2016



Methods

Summary

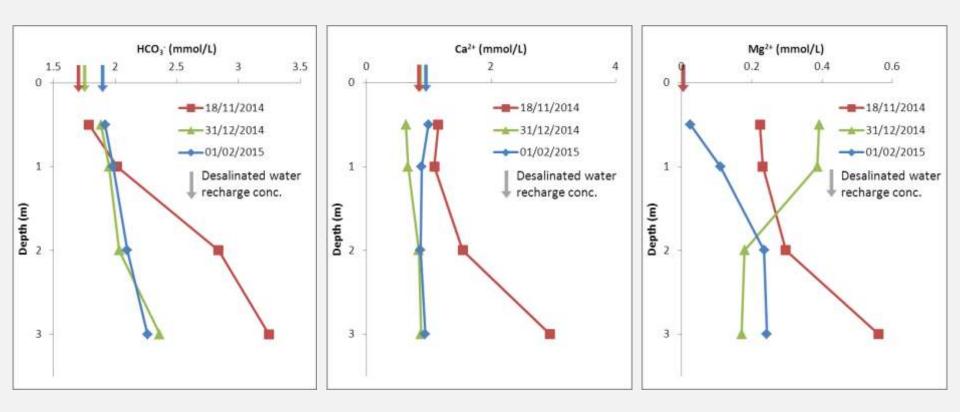
Vadose zone WC during MAR 2015



Overview Methods Monitoring Data Extras Summar			Monitoring		Extras	Summary
--	--	--	------------	--	--------	---------

Infiltration rates (pond and local scales)

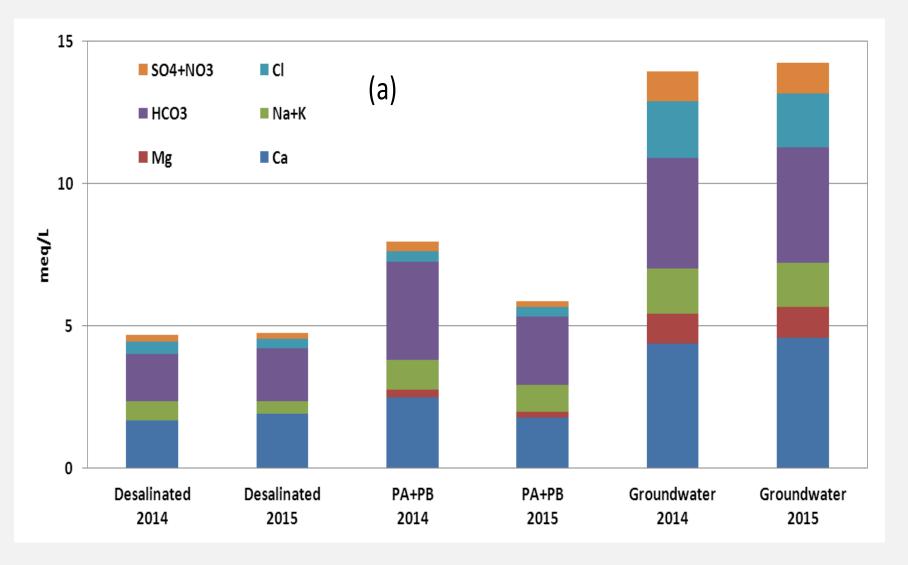
Geochemistry – suction cups (upper vadose zone sampling)



MARSOL Lavrion Workshop Athens, 16 – 18 March 2016

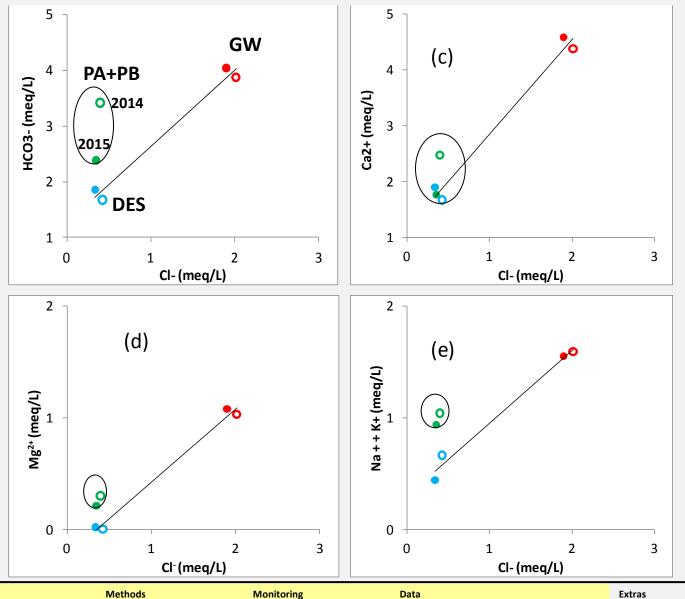
18/11/2014 – Dry sediment water from the beginning of infiltration

31/12/2014 – After 1.5 days of infiltration


01/02/2015 – After 34 days of infiltration

Overview Methods	Monitoring	Data	Extras	Summary
------------------	------------	------	--------	---------

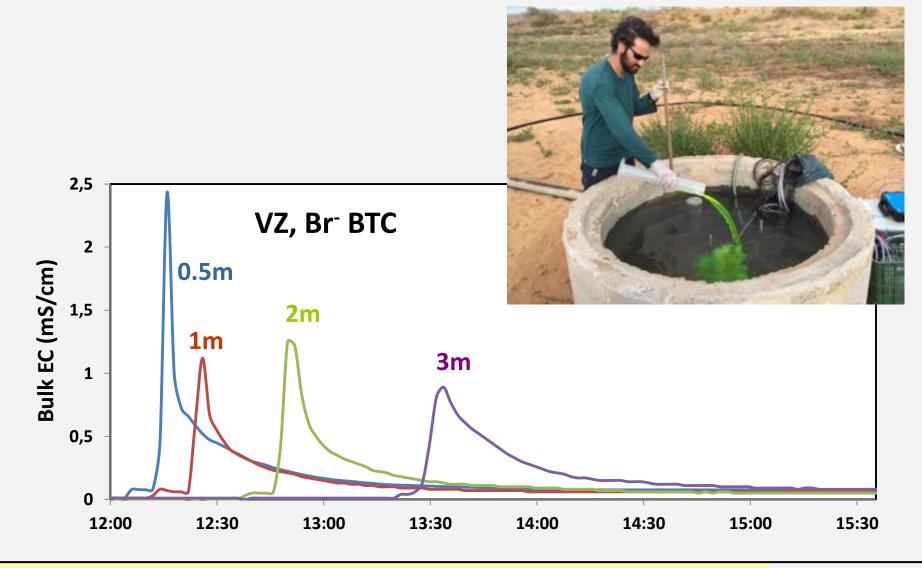
4 characteristic types of water


Overview Methods Monitoring Data Extras Summ				Data	Extras	Summary
--	--	--	--	------	--------	---------

Shallow groundwater under the pond are not a mix

Overview

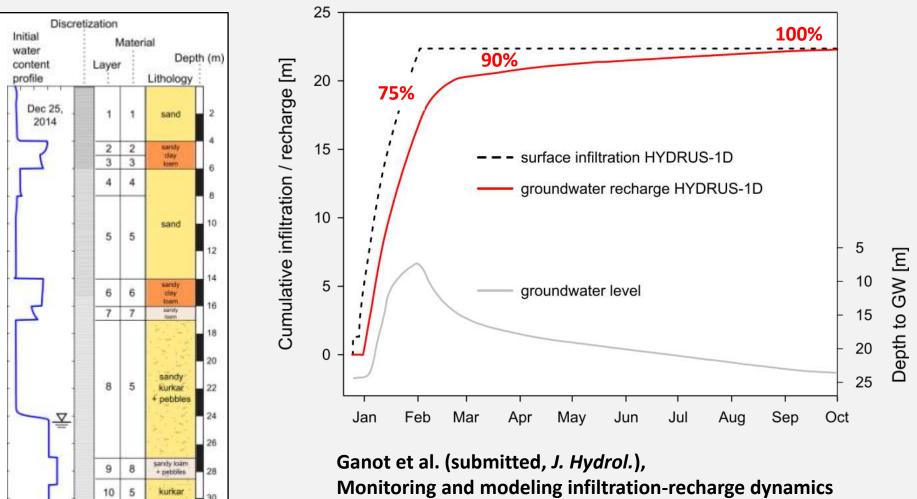
MARSOL Lavrion Workshop Athens, 16 – 18 March 2016



Summary

Using the monitoring system for controlled experiments

MARSOL Lavrion Workshop Athens, 16 – 18 March 2016



Overview Methods Monitoring Data Extras Summary

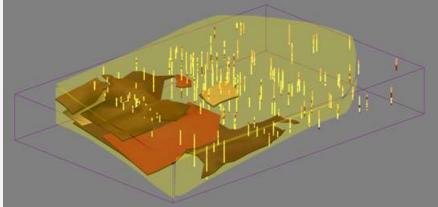
VZ modeling using the monitored data

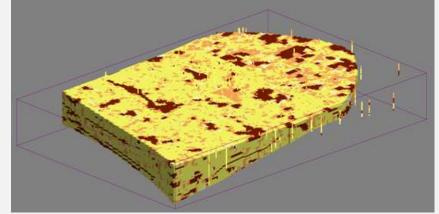
MARSOL Lavrion Workshop Athens, 16 – 18 March 2016

of managed aquifer recharge with desalinated seawater

Overview

1 2 3 4


Monitoring


GW Modeling (MEK)

- Propose MAR scenarios
- ~ 70 km²
- MODFLOW (GMS)
 - Geostatistical + deterministic aquifer material distribution

DBPs due to chlorinated desalinated seawater (BGU)

MARSOL Lavrion Workshop Athens, 16 - 18 March 2016

		THM				Water isotopes	
	Sample	CHCl ₃	CHCl ₂ Br	CHClBr ₂	CHBr ₃	δ ² Η (‰)	δ ¹⁸ Ο (‰)
Field	Well PA					10.861	1.540
samples	Well PB		+			10.718	1.275
	P-0.5				+	11.499	1.490
	P-1.0					11.185	1.429
	P-2.0		+	+	+	10.746	1.325
	P-3.0		+	+	+	10.818	1.377
Reference	DSW	Not	Not	Not	Not		
values		detected	detected	detected	detected		
						11.339	1.414
	Well M6		Not an	alyzed		-18.408	-4.485
	Well M9					-18.475	-4.508

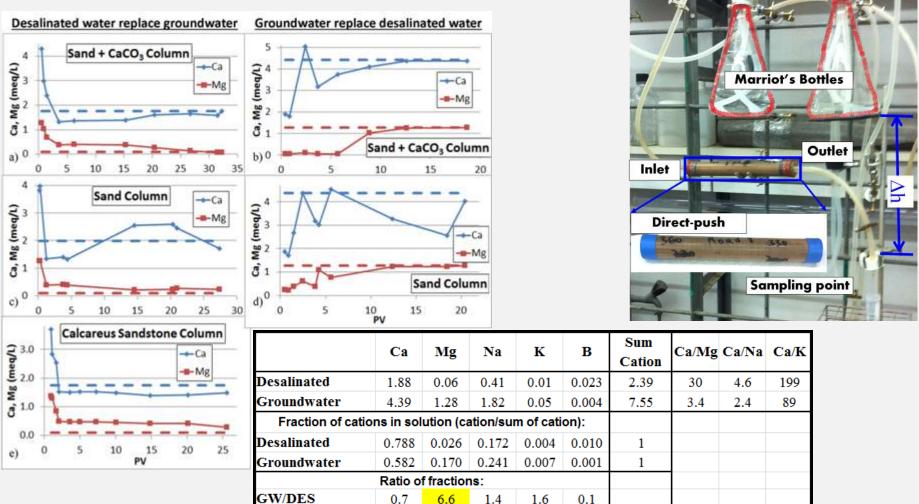
Overview

Methods

Monitoring

Extras

Summary


Summary & Conclusions

- The vadose-zone and groundwater monitoring system in the infiltration pond is continuously operating since the October 2014 Monitoring is automated; Data collection is manual
- Monitoring is maintained by robust commercial sensors
- Water quality data (VZ suction-cups, GW sampling) is noncontinuous and manually-based
- Deep unsaturated-zone monitoring (5-20 m) is needed for a better characterization and understanding of vadose-zone processes during MAR

Column experiments

Ronen-Eliraz et al. (in review, *STOTEN*), Simulating Managed Aquifer Recharge by Column Experiments with Alternating Desalinated Water and Groundwater

DES/GW

1.4

0.2

0.7

17.9

0.6

MARSOL Lavrion Workshop Athens, 16 – 18 March 2016

